Objective.This study proposes a robust optimization (RO) strategy utilizing virtual CTs (vCTs) predicted by an anatomical model in intensity-modulated proton therapy (IMPT) for nasopharyngeal cancer (NPC).Methods and Materials.For ten NPC patients, vCTs capturing anatomical changes at different treatment weeks were generated using a population average anatomy model. Two RO strategies of a 6 beams IMPT with 3 mm setup uncertainty (SU) and 3% range uncertainty (RU) were compared: conventional robust optimization (cRO) based on a single planning CT (pCT), and anatomical RO incorporating 2 and 3 predicted anatomies (aRO2 and aRO3). The robustness of these plans was assessed by recalculating them on weekly CTs (week 2-7) and extracting the voxel wise-minimum and maximum doses with 1 mm SU and 3% RU (voxmin\voxmax1mm3%).Results.The aRO plans demonstrated improved robustness in high-risk CTV1 and low-risk CTV 2 coverage compared to cRO plans. The weekly evaluation showed a lower plan adaptation rate for aRO3 (40%) vs. cRO (70%). The weekly nominal and voxmax1mm3%doses to OARs, especially spinal cord, are better controlled relative to their baseline doses at week 1 with aRO plans. The accumulated dose analysis showed that CTV1&2 had adequate coverage and serial organs (spinal cord and brainstem) were within their dose tolerances in the voxmin\voxmax1mm3%, respectively.Conclusion.Incorporating predicted weekly CTs from a population based average anatomy model in RO improves week-to-week target dose coverage and reduces false plan adaptations without increasing normal tissue doses. This approach enhances IMPT plan robustness, potentially facilitating reduced SU and further lowering OAR doses.
Read full abstract