Osteoarthritis (OA) of the knee is often characterized by joint space narrowing on X-ray, knee pain, and a loss of joint function through progressive cartilage degradation and intermittent synovial inflammation. The objective of this work was to develop an in vitro model in a clinically relevant system. Normal human synovial fibroblasts were cultured with U937 cells for 3 days then combined with a chondrogenic stem cell pellet for another 4 days. This culture system mimicked many of the aspects of early stage OA including production of cytokines and degradative enzymes, MMP-1 and MMP-3, resulting in a conditioned medium profile similar to OA synovial fluid. This catabolic environment resulted in the release of glycosaminoglycan (GAG) from the pellet. In a similar manner to early stage OA, the pellet had increased aggrecan and collagen II expression. All of these effects are hallmarks of early stage OA. This relatively simple tissue model containing a 3D cartilage component interacting with synoviocytes and macrophages could be useful to understand early causes and progression of OA. It can be scaled easily thus useful for high throughput screening of disease modifying drugs in a clinically relevant system.
Read full abstract