Let X be a Banach function space over the unit circle such that the Riesz projection P is bounded on X and let H[X] be the abstract Hardy space built upon X. We show that the essential norm of the Toeplitz operator T(a):H[X]→H[X]\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$T(a):H[X]\\rightarrow H[X]$$\\end{document} coincides with ‖a‖L∞\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Vert a\\Vert _{L^\\infty }$$\\end{document} for every a∈C+H∞\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$a\\in C+H^\\infty $$\\end{document} if and only if the essential norm of the backward shift operator T(e-1):H[X]→H[X]\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$T(\ extbf{e}_{-1}):H[X]\\rightarrow H[X]$$\\end{document} is equal to one, where e-1(z)=z-1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extbf{e}_{-1}(z)=z^{-1}$$\\end{document}. This result extends an observation by Böttcher, Krupnik, and Silbermann for the case of classical Hardy spaces.