We aimed to develop population pharmacokinetic/pharmacodynamic (PK/PD) models that can effectively describe ketamine and norketamine PK/PD relationships for Montgomery–Åsberg Depression Rating Scale (MADRS) scores, blood pressure (BP), and heart rate (HR) following i.v., s.c., and i.m. ketamine administration in patients with treatment‐refractory depression. Ketamine PK/PD data were collected from 21 treatment‐refractory depressed participants who received ketamine (dose titration 0.1–0.5 mg/kg as single doses) by i.v., s.c., or i.m. administration. Model development used nonlinear mixed effect modeling. Ketamine and norketamine PK were best described using two‐compartment models with first‐order absorption after s.c. and i.m. administration. Estimated ketamine bioavailability after i.m. and s.c. was ~ 64% with indistinguishable first‐order absorption rate constants. Allometric scaling of body weight on all clearance and volumes of distribution improved the model fit. The delay in the concentration‐response relationship for MADRS scores was best described using a turnover model (turnover time ~ 42 hours), whereas for the BP and HR rates this was an immediate effect model. For all PD effects, ketamine alone was superior to models with norketamine concentration linked to an effect. No covariates were identified for PD effects. The estimated half‐maximal effective concentration from the MADRS score, BP, and HR were 0.44, 468, and 7,580 ng/mL, respectively. The integrated population models were able to effectively describe the PK/PD relationships for MADRS scores, BP, and HR after i.v., s.c., and i.m. ketamine administration. These findings allow for a deeper understanding of the complex relationships between route of ketamine administration and clinical response and safety.