Several genetic markers have shown associations with muscle performance and physical abilities, but the response to exercise therapy is still unknown. The aim of this study was to test the response of patients with long COVID through an aerobic physical therapy strategy by the Nordic walking program and how several genetic polymorphisms involved in muscle performance influence physical capabilities. Using a nonrandomized controlled pilot study, 29 patients who previously suffered from COVID-19 (long COVID = 13, COVID-19 = 16) performed a Nordic walking exercise therapy program for 12 sessions. The influence of the ACE (rs4646994), ACTN3 (rs1815739), AMPD1 (rs17602729), CKM (rs8111989), and MLCK (rs2849757 and rs2700352) polymorphisms, genotyped by using single nucleotide primer extension (SNPE) in lactic acid concentration was established with a three-way ANOVA (group × genotype × sessions). For ACE polymorphism, the main effect was lactic acid (p = 0.019). In ACTN3 polymorphism, there were no main effects of lactic acid, group, or genotype. However, the posthoc analysis revealed that, in comparison with nonlong COVID, long COVID increased lactic acid concentrations in Nordic walking sessions in CT and TT genotypes (all p < 0.05). For AMPD1 polymorphism, there were main effects of lactic acid, group, or genotype and lactic acid × genotype or lactic acid × group × genotype interactions (all p < 0.05). The posthoc analysis revealed that, in comparison with nonlong COVID, long COVID increased lactic acid concentrations in Nordic walking sessions in CC and CT genotypes (all p < 0.05). Physical therapy strategy through Nordic walking enhanced physical capabilities during aerobic exercise in post-COVID19 patients with different genotypes in ACTN3 c.1729C>T and AMPD1 c.34C>T polymorphisms. These findings suggest that individuals who reported long COVID who presumably exercised less beforehand appeared to be less able to exercise, based on lactate levels, and the effect of aerobic physical exercise enhanced physical capabilities conditioned by several genetic markers in long COVID patients.
Read full abstract