Riboswitches are noncoding RNA elements found in the 5'-untranslated region of messenger RNA (mRNA) that mediate gene expression in a cis fashion in the absence of protein. This common regulatory strategy in bacteria is achieved through the interplay of two distinct domains: an aptamer domain responsible for sensing intracellular concentrations of a specific metabolite and a domain containing a secondary structural switch directly controlling expression. In a recent study, riboswitches have been discovered that are capable of regulating transcription by using an RNA architecture mimicking a Boolean NOR logic gate. Tandem arrangement of elements that recognize S-adenosylmethionine and coenzyme B12 yields an mRNA that is only expressed when both metabolites are in low concentration in the cell.