The effect of vegetation seasonal cycle alterations to aerosol dry deposition on PM2.5 concentrations (hereafter referred as the VSC effect) in China was investigated using a numerical modelling system (WRF/CUACE). Two simulation experiments using the vegetation parameters in particle dry deposition schemes typical for January and July revealed an absolute increase in surface PM2.5 concentrations of about 2.4 μg/m3 and a 5.5% relative increase in China (within model domain 2). The effect in non-urban areas was more significant than that in urban areas. The increases in PM2.5 concentrations in Beijing–Tianjin–Hebei (BTH), Yangtze River Delta (YRD), Pearl River Delta (PRD), Sichuan Basin (SCB), and Central China (CC) were calculated as 1.9 μg/m3, 3.4 μg/m3, 3.1 μg/m3, 4.3 μg/m3, and 4.9 μg/m3, respectively, corresponding to relative increases of 2.9%, 4.5%, 5.4%, 5.8%, and 5.9%. These results demonstrate that the effect of decreased particle dry deposition due to reduced vegetation in southern areas was stronger, which was partially attributed to the increased vegetation cover and more significant seasonal changes in those regions. Furthermore, the increased PM2.5 concentrations caused by the VSC effect were transported from north to south via the winter northerly winds, which weakened the effect in North China Plain and enhanced the effect in parts of central and southern China, such as the south of CC. Although the surface PM2.5 concentration was relatively high in North China Plain, the effects of the northerly wind and relatively small dry deposition velocity meant that the removal of PM2.5 in that region was relatively less than in southern areas of China. These results will contribute to understanding of the underlying mechanisms of PM2.5 enhancement during winter in China.