The present work describes the potential application of environmentally friendly sodium carboxymethylcellulose/gelatin (CMC/Gel) semi-interpenetrating hydrogels prepared by citric acid as a nontoxic cross-linking agent to adsorb dyes. The prepared hydrogels were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA/DTG), and swelling study. The adsorption performance of CMC/Gel2 (C/G2) hydrogel on methylene blue (MB) was investigated. The results showed the better adsorption conditions: adsorption time of 300 min, initial MB concentration of 500 mg/L, adsorbent dosage of 1.2 g/L, solution pH of 7, and temperature of 30 °C. The adsorption kinetics fit the pseudo-second order kinetics model, and the adsorption isotherm fit the Langmuir isotherm model. The maximum adsorption capacity reached 943.40 mg/g. The adsorption process is a spontaneous exothermic process. After three adsorption-desorption cycles, the removal rate of MB by hydrogel still reached 85%, with good reusability. Consequently, the hydrogel can be used as an environmentally friendly, stable, and efficient adsorbent for dyes in wastewater treatment.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access