In Plasma Medicine studies, the effect of non-thermal plasma (NTP) on biological targets is typically correlated with the amount of stable reactive oxygen and nitrogen species produced in a liquid medium. The effect of NTP and the response of the biological target on cellular redox mechanisms is overlooked in these investigations. Additionally, the influence of electrical properties of cells on the physical properties of NTP is neglected. Therefore, we used a floating electrode dielectric barrier discharge plasma to explore the impact of cell structure, size, and viability of the biological target on the physical properties of NTP. Lissajous figures were used to determine circuit capacitance and energy per cycle during NTP exposure of different cell suspensions. We show that both, structural integrity and active enzymic processes of cells change the electrical properties of NTP. Correlations were also drawn between NTP-produced hydrogen peroxide and nitrite with measured capacitance. Our studies indicate that the observed changes between different cell suspensions may be due to a feedback loop between the biological target and the NTP source. In future studies, a more detailed analysis is needed to improve the control of clinical NTP devices.