We introduce a notion of Morita equivalence for non-selfadjoint operator algebras equipped with a completely isometric involution (operator ∗\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$*$$\\end{document}-algebras). We then show that the unbounded Kasparov product by a Morita equivalence bimodule induces an isomorphism between equivalence classes of twisted spectral triples over Morita equivalent operator ∗\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$*$$\\end{document}-algebras. This leads to a tentative definition of unbounded bivariant K-theory and we prove that this bivariant theory is related to Kasparov’s bivariant K-theory via the Baaj-Julg bounded transform. Moreover, the unbounded Kasparov product provides a refinement of the usual interior Kasparov product. We illustrate our results by proving C1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$C^1$$\\end{document}-versions of well-known C∗\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$C^*$$\\end{document}-algebraic Morita equivalences in the context of hereditary subalgebras, conformal equivalences and crossed products by discrete groups.
Read full abstract