We introduce and study two exotic families of finite-dimensional algebras over an algebraically closed field. We prove that every such an algebra is derived equivalent to a higher spherical algebra studied by Erdmann and Skowroński (Arch. Math. 114, 25–39, 2020), and hence that it is a tame symmetric periodic algebra of period 4. This together with the results of Erdmann and Skowroński (Algebr. Represent. Theor. 22, 387–406, 2019; Arch. Math. 114, 25–39, 2020) shows that every trivial extension algebra of a tubular algebra of type (2,2,2,2) admits a family of periodic symmetric higher deformations which are tame of non-polynomial growth and have the same Gabriel quiver, answering the question recently raised by Skowroński.
Read full abstract