Vasopressin is the key hormone involved in water conservation and regulation of water balance, essential for life. In the renal collecting duct, vasopressin binds to the V2 receptor, increasing water permeability through activation of aquaporin-2 redistribution to the luminal membrane. This mechanism promotes rapid water reabsorption, important for immediate survival; however, only recently it has become clear that long-term adverse effects are associated with alterations of the vasopressin-aquaporin-2 pathway, leading to several syndromes associated with water balance disorders. The kidney resistance to the vasopressin action may cause severe dehydration for patients and, conversely, nonosmotic release of vasopressin is associated with water retention and increasing the circulatory blood volume. This chapter discusses the relevance of the altered vasopressin-aquaporin-2 pathway in some diseases associated with water balance disorders, including congenital nephrogenic diabetes insipidus, syndrome of inappropriate secretion of antidiuretic hormone, nephrogenic syndrome of inappropriate antidiuresis, and autosomal dominant polycystic kidney disease. The emerging picture suggests that targeting the vasopressin-AQP2 axis can provide therapeutic benefits in those patients.
Read full abstract