The aim of this paper is first to introduce generalizations of quantum integrals and derivatives which are called (ϕ-h)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(\\phi \\,-\\,h)$$\\end{document} integrals and (ϕ-h)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(\\phi \\,-\\,h)$$\\end{document} derivatives, respectively. Then we investigate some implicit integral inequalities for (ϕ-h)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(\\phi \\,-\\,h)$$\\end{document} integrals. Different classes of convex functions are used to prove these inequalities for symmetric functions. Under certain assumptions, Hermite–Hadamard-type inequalities for q-integrals are deduced. The results presented herein are applicable to convex, m-convex, and ħ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\hbar $$\\end{document}-convex functions defined on the non-negative part of the real line.
Read full abstract