In the second paper of the two part study of membrane microair vehicles, computations are performed for a plunging membrane airfoil. The computational model uses a sixth-order finite difference solution of the Navier–Stokes equations coupled to a finite element solution of a set of nonlinear string equations. The effect, on the structural and fluid response, of plunging Strouhal number, reduced frequency, and static angle of attack is examined. Qualitatively, the flow field is found to be very complex with interactions of vortices shed from various locations along the chord of the airfoil. At a low angle of attack and a low Strouhal number, increasing reduced frequency results in a decrease and an increase in the mean sectional lift and drag coefficients, respectively. Also, at a low angle of attack, increasing the Strouhal number has minimal effect at high and low values of reduced frequencies, but a significant effect is found at an intermediate value of reduced frequency. When the effect of angle of attack is studied for fixed values of Strouhal number and reduced frequency, it is found that the act of plunging gives improved mean sectional lift when compared with the case of a fixed flexible airfoil. The improvement does not increase monotonically with the angle of attack but instead is maximum at an intermediate value. Finally, increasing the value of the membrane prestrain, which stiffens the airfoil, results in a reduced value of the sectional lift coefficient for a given Strouhal number, reduced frequency, and angle of attack.
Read full abstract