We are concerned with the Umemura polynomials associated with rational solutions of the third Painlevé equation. We extend Taneda's method, which was developed for the Yablonskii-Vorob'ev polynomials associated with the second Painlevé equation, to give an algebraic proof that the rational functions generated by the nonlinear recurrence relation which determines the Umemura polynomials are indeed polynomials. Our proof is constructive and gives information about the roots of the Umemura polynomials.
Read full abstract