Transport of reactive solutes in groundwater is affected by physical and chemical heterogeneity of the porous medium, leading to complex spatio-temporal patterns of concentrations and reaction rates. For certain cases of bioreactive transport, it could be shown that the concentrations of reactive constituents in multi-dimensional domains are approximately aligned with isochrones, that is, lines of identical travel time, provided that the chemical properties of the matrix are uniform. We extend this concept to combined physical and chemical heterogeneity by additionally considering the time that a water parcel has been exposed to reactive materials, the so-called exposure time. We simulate bioreactive transport in a one-dimensional domain as function of time and exposure time, rather than space. Subsequently, we map the concentrations to multi-dimensional heterogeneous domains by means of the mean exposure time at each location in the multi-dimensional domain. Differences in travel and exposure time at a given location are accounted for as time difference. This approximation simplifies reactive-transport simulations significantly under conditions of steady-state flow when reactions are restricted to specific locations. It is not expected to be exact in realistic applications because the underlying assumption, such as neglecting transverse mixing altogether, may not hold. We quantify the error introduced by the approximation for the hypothetical case of a two-dimensional, binary aquifer made of highly-permeable, non-reactive and low-permeable, reactive materials releasing dissolved organic matter acting as electron donor for aerobic respiration and denitrification. The kinetically controlled reactions are catalyzed by two non-competitive bacteria populations, enabling microbial growth. Even though the initial biomass concentrations were uniform, the interplay between transport, non-uniform electron-donor supply, and bio-reactions led to distinct spatial patterns of the two types of biomass at late times. Results obtained by mapping the exposure-time based results to the two-dimensional domain are compared with simulations based on the two-dimensional, spatially explicit advection-dispersion-reaction equation. Once quasi-steady state has been reached, we find a good agreement in terms of the chemical-compound concentrations between the two approaches inside the reactive zones, whereas the exposure-time based model is not able to capture reactions occurring in the zones with zero electron-donor release. We conclude that exposure-time models provide good approximations of nonlinear bio-reactive transport when transverse mixing is not the overall controlling process and all reactions are essentially restricted to distinct reactive zones.
Read full abstract