Abstract The Sri Lanka Dome is a cyclonic recirculation feature in the Southwest Monsoon Current system in the southern Bay of Bengal. Cooler sea surface temperature (SST) in the vicinity of this system is often denoted as the Bay of Bengal “Cold Pool.” Although the wind shadow of Sri Lanka creates a region of strong positive wind stress curl, both sea level height dynamics and the distribution of cool SST cannot be explained by wind stress curl alone via traditional Ekman pumping. Moreover, the Cold Pool region is often aligned with the eastern portion of the Sri Lanka Dome, as defined by sea surface height. Previous work has attributed the spatial SST pattern to lateral advection. In this analysis, we explore whether low-latitude weakly nonlinear “vorticity” Ekman pumping could be an explanation for both cooling and observed changes in sea level height in the southwest Bay of Bengal. We show that weakly nonlinear upwelling, calculated from ERA5 and AVISO geostrophic currents, collocates with changes in sea level height (and presumably isopycnals). While the SST signal is sensitive to several factors including the net surface flux, regional upwelling explains changes in AVISO sea level height if the nonlinear terms are included, in both the Sri Lanka Dome and the region of the Southwest Monsoon Current.
Read full abstract