Chlorophyll a (CLA) pigments and thylakoid membranes are crucial components of plants for photosynthesis. To understand the effect of CLA on the structure and dynamics of thylakoid membranes, coarse-grained molecular dynamics (CG MD) simulations of thylakoid membranes are performed by varying the numbers of CLA at 293 K using MARTINI-2 force fields. The membrane undergoes a lamellar to nonlamellar phase transition above a critical concentration of CLA. The CLAs dynamically form aggregates of different orders and preferentially fetch the least unsaturated nonbilayer-forming lipids around them, resulting in a nonlamellar phase with fused regions. These fused regions cause a structural arrest of CLA and lipids, inducing dynamic heterogeneity manifested by non-Gaussian parameters and van Hove correlation functions. The lamellar to nonlamellar phase transition of the membrane is associated with a drastic reduction in correlation length of the immobile CLA and lipids governed by the fused topology. Such insights into CLA-induced structural transitions in thylakoid membranes are pertinent for understanding nonphotochemical quenching mechanisms and hold promise for designing future artificial photosynthetic materials and applications in photodynamic therapy.