AbstractWe present a model for the rheological behaviour of non-dilute suspensions of initially spherical viscoelastic particles in viscous fluids under uniform Stokes flow conditions. The particles are assumed to be neutrally buoyant Kelvin–Voigt solids undergoing time-dependent finite deformations and exhibiting generalized neo-Hookean behaviour in their purely elastic limit. We investigate the effects of the shape dynamics and constitutive properties of the viscoelastic particles on the macroscopic rheological behaviour of the suspensions. The proposed model makes use of known homogenization estimates for composite material systems consisting of random distributions of aligned ellipsoidal particles with prescribed two-point correlation functions to generate corresponding estimates for the instantaneous (incremental) response of the suspensions, together with appropriate evolution laws for the relevant microstructural variables. To illustrate the essential features of the model, we consider two special cases: (i) extensional flow and (ii) simple shear flow. For each case, we provide the time-dependent response and, when available, the steady-state solution for the average particle shape and orientation, as well as for the effective viscosity and normal stress differences in the suspensions. The results exhibit shear thickening for extensional flows and shear thinning for simple shear flows, and it is found that the volume fraction and constitutive properties of the particles significantly influence the rheology of the suspensions under both types of flows. In particular, for extensional flows, suspensions of particles with finite extensibility constraints are always found to reach a steady state, while this is only the case at sufficiently low strain rates for suspensions of (less realistic) neo-Hookean particles, as originally reported by Roscoe (J. Fluid Mech., vol. 28, 1967, pp. 273–293) and Gao et al. (J. Fluid Mech., vol. 687, 2011, pp. 209–237). For shear flows, viscoelastic particles with high viscosities can experience a damped oscillatory motion of decreasing amplitude before reaching the steady state.
Read full abstract