This research focuses on analyzing wool samples dyed with synthetic dyes from the early 20th century. A methodology to identify and distinguish wool fibers dyed with azo, triphenylmethane, and xanthene dyes, which are no longer in use, using the ATR-FTIR spectra, is presented. Firstly, the dataset was subjected to PCA, which revealed the similarities and differences among the samples, illustrating a distribution pattern based on dye classes. MCR-ALS was employed to extract the spectral profiles of the dyed fibers, thereby enhancing the efficacy of the analytical techniques and extracting the comprehensive information from a single instrument. The combination of ATR-FTIR spectroscopy with chemometric methods, such as PCA and MCR-ALS, has proven to be an effective strategy for identifying and differentiating wool fibers dyed with early azo, triphenylmethane, and xanthene dyes. This approach has demonstrated particular effectiveness in enabling rapid analysis without requiring sampling or pretreatment. Moreover, the analysis is supported by thorough bibliographic research on these no longer used colorants. In order to maximize the potential of non-destructive spectroscopic techniques, such as ATR-FTIR, the approach used has proven to be crucial. This study underscores how chemometric techniques expand the capabilities of spectroscopy, extracting extensive information from a single instrument and aligning with the goals of cultural heritage analysis.