ABSTRACTWe observe that every non-commutative unital ring has at least three maximal commutative subrings. In particular, non-commutative rings (resp., finite non-commutative rings) in which there are exactly three (resp., four) maximal commutative subrings are characterized. If R has acc or dcc on its commutative subrings containing the center, whose intersection with the nontrivial summands is trivial, then R is Dedekind-finite. It is observed that every Artinian commutative ring R, is a finite intersection of some Artinian commutative subrings of a non-commutative ring, in each of which, R is a maximal subring. The intersection of maximal ideals of all the maximal commutative subrings in a non-commutative local ring R, is a maximal ideal in the center of R. A ring R with no nontrivial idempotents, is either a division ring or a right ue-ring (i.e., a ring with a unique proper essential right ideal) if and only if every maximal commutative subring of R is either a field or a ue-ring whose socle is the contraction of that of R. It is proved that a maximal commutative subring of a duo ue-ring with finite uniform dimension is a finite direct product of rings, all of which are fields, except possibly one, which is a local ring whose unique maximal ideal is of square zero. Analogues of Jordan-Hölder Theorem (resp., of the existence of the Loewy chain for Artinian modules) is proved for rings with acc and dcc (resp., with dcc) on commutative subrings containing the center. A semiprime ring R has only finitely many maximal commutative subrings if and only if R has a maximal commutative subring of finite index. Infinite prime rings have infinitely many maximal commutative subrings.