Allicin has been known to improve wound healing via antimicrobial and anti-inflammatory properties. The aim of this study was to evaluate whether an allicin-coated tracheal tube can prevent tracheal stenosis through improving wound healing after tracheal injury. Allicin-coated silicone tracheal tube (t-tube) was prepared by the polydopamine-mediated coating method. Tracheal mucosa was injured, and an allicin-coated t-tube was placed into the trachea to evaluate mucosal changes until designated time point. Anti-inflammatory, anti-bacterial and cytotoxic effects of allicin were also investigated in in vitro. Allicin- coated silicone was not cytotoxic, and it showed anti-inflammatory and anti-bacterial effects in in vitro analysis. The use of allicin-coated t-tube in a rabbit model showed favorable mucosal healing with significant decrease of proinflammatory cytokines compared to the non-coated tube group. The allicin-coated tube showed obvious decreased number of cocci-shaped bacterial attached to the tube surface. From the histological point of view, the allicin- coated tube showed faster regeneration of the normal respiratory epithelial structure compared to the non-coated group. Allicin-coated t-tube showed anti-inflammatory and anti-bacterial effects on injured tracheal mucosa. We suggest that allicin-coated t-tube can be used for promoting physiological wound healing to prevent laryngotracheal stenosis.
Read full abstract