The surface coating of a synthetic surface is currently investigated to decrease the harmful effects of cardiopulmonary bypass (CPB). This study was designed to study the effects of the surface coating of a hollow fiber membrane oxygenator on coagulation, inflammation markers, and clinical outcomes. The biomaterials used to coat the membrane include heparin, polyethylene oxide chains (PEO), and sulfate/sulfonate groups. The coated membrane was compared to an uncoated oxygenator made of polypropylene. Two hundred patients who were scheduled to undergo valve repair and/or replacement surgery with or without coronary surgery were enrolled in the study. The patients were randomized to undergo CPB with either the Avecor oxygenator with Trillium (Medtronic, Minneapolis, MN, USA), a biopassive surface, or the Monolyth (Sorin, Irvine, CA, USA) oxygenator without coating. The primary and secondary endpoints were the differences between these oxygenators in regard to patients' biochemistry, coagulation profiles, inflammatory mediators, and clinical outcomes, including blood loss and neurological events. There were no differences between the two groups in terms of biochemistry, coagulation profile, inflammatory mediator release, and blood loss. Five patients in the Avecor group showed clinical evidence of a stroke confirmed with computerized tomography (CT) scan imaging, and none in the noncoated oxygenator group. The oxygenator Avecor offers similar results in terms of inflammation and coagulation profiles and blood loss during valvular surgery compared to a standard uncoated control oxygenator. The rate of neurological events was unusually elevated in the former group of patients, with only speculative explanation at this point. Further studies are warranted to clarify this aspect.
Read full abstract