Motor control requires the coordination of spatiotemporally precise neural oscillations in the beta and gamma range within the primary motor cortex (M1). Recent studies have shown that motor performance can be differentially modulated based on the spectral target of noninvasive transcranial alternating current stimulation (tACS), with gamma-frequency tACS improving motor performance. However, the spectral specificity for eliciting such improvements remains unknown. Herein, we derived the peak movement-related gamma frequency in 25 healthy adults using magnetoencephalography and a motor control paradigm. These individualized peak gamma frequencies were then used for personalized sessions of tACS. All participants completed 4 sessions of high-definition (HD)-tACS (sham, low-, peak-, and high-gamma frequency) over M1 for 20min during the performance of sequential movements of varying complexity (e.g. tapping adjacent fingers or nonadjacent fingers). Our primary findings demonstrated that individualized tACS dosing over M1 leads to enhanced motor performance/learning (i.e. greatest reduction in time to complete motor sequences) compared to nonspecific gamma-tACS in humans, which suggests that personalized neuromodulation may be advantageous to optimize behavioral outcomes.
Read full abstract