In high-level visual areas in the human brain, preference for inanimate objects is observed regardless of stimulation modality (visual/auditory/tactile) and individual's visual experience (sighted/blind) whereas preference for animate entities seems robust mainly in the visual modality. Here, we test a hypothesis explaining this domain difference: Object representations can be activated through nonvisual stimulation when their shapes are systematically related to action system representations, a quality typical of most inanimate objects but of only specific animate entities. We studied functional magnetic resonance imaging activations in congenitally blind and sighted individuals listening to animal, object, and human sounds. In blind individuals, the typical location of the fusiform face area preferentially responded to human facial expression sounds clearly related to specific facial actions and resulting face shapes but not to speech or animal sounds. No univariate preference for any sound category was observed in the fusiform gyrus in sighted individuals, but the expected multivoxel effects were present. We conclude that nonvisual signals can activate shape representations of those stimuli-inanimate or animate-for which shape and action computations are transparently related. However, absence of potentially competing visual inputs seems necessary for this effect to be clearly detectable in the case of animate representation.
Read full abstract