Reaction–diffusion equations serve as fundamental tools in describing pattern formation in biology. In these models, nonuniform steady states often represent stationary spatial patterns. Notably, these steady states are not unique, and unveiling them mathematically presents challenges. In this paper, we introduce a framework based on bifurcation theory to address pattern formation problems, specifically examining whether nonuniform steady states can bifurcate from trivial ones. Furthermore, we employ linear stability analysis to investigate the stability of the trivial steady-state solutions. We apply the method to two classic reaction–diffusion models: the Schnakenberg model and the Gray–Scott model. For both models, our approach effectively reveals many nonuniform steady states and assesses the stability of the trivial solution. Numerical computations are also presented to validate the solution structures for these models.
Read full abstract