Mycobacterium avium complex (MAC) is a major cause of non-tuberculous pulmonary and disseminated diseases worldwide, inducing bronchiectasis, and affects HIV and immunocompromised patients. In MAC, Mycobacterium avium subsp. hominissuis is a pathogen that infects humans and mammals, and that is why it is a focus of this study. It is crucial to find essential drug targets to eradicate the infections caused by these virulent microorganisms. The application of bioinformatics and proteomics has made a significant impact on discovering unique drug targets against the deadly pathogens. One successful bioinformatics methodology is the use of in silico subtractive genomics. In this study, the aim was to identify the unique, non-host and essential protein-based drug targets of Mycobacterium avium subsp. hominissuis via in silico a subtractive genomics approach. Therefore, an in silico subtractive genomics approach was applied in which complete proteome is subtracted systematically to shortlist potential drug targets. For this, the complete dataset of proteins of Mycobacterium avium subsp. hominissuis was retrieved. The applied subtractive genomics method, which involves the homology search between the host and the pathogen to subtract the non-druggable proteins, resulted in the identification of a few prioritized potential drug targets against the three strains of M. avium subsp. Hominissuis, i.e., MAH-TH135, OCU466 and A5. In conclusion, the current study resulted in the prioritization of vital drug targets, which opens future avenues to perform structural as well as biochemical studies on predicted drug targets against M. avium subsp. hominissuis.