Clinically, the incidence of nontuberculous mycobacteria (NTM) lung disease is on the rise, and Mycobacterium intracellulare (M. intracellulare) has attracted much attention as a common opportunistic pathogen in clinical practice. So it is very important to study its immunopathogenic mechanism. In this study, the mechanism of M. intracellulare induced pyroptosis of macrophage was investigated. As shown in Fig.1, the secretion of IL-1β and IL-18 in J774A.1 cells increased with time after M. intracellulare infection and was affected by caspase-1 activation and K + efflux, while caspase-1 was significantly expressed in infected cells. Further from Fig.2, NLRP3,AIM2,ASC proteins were significantly expressed in J774A.1 cells after infection, indicating that the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammasome were involved in the infection process. In addition, when caspase-1 activity and K + efflux were inhibited, the expression of related proteins was significantly reduced. It indicates that the activation of NLRP3 and AIM2 is regulated by caspase-1 and K+. Figure3, the percentage of dead cells with cell membrane damage increases after infection and cleavage of GSDMD proteins occurs. In summary, infection of J774A.1 cells with M. intracellulare induces pyroptosis, and this process is mediated by caspase-1. Our study provides information for further understanding of the molecular mechanism of M. intracellulare infection.