Coexistence of non-trivial band topology and intrinsic magnetic order not only leads to emergent phenomena but also allows for the tunability of the exotic properties from different degrees of freedom. By performing transport measurements at synergetic extreme conditions, here we report on pressure engineering of intertwined structural, magnetic, and topological phase transitions in an antiferromagnetic Dirac semimetal NdSb. We show that the original antiferromagnetic state is strengthened in the low-pressure region while destabilized upon further compression close to the critical pressure where a structural transition from Fm-3m phase to P4/mmm phase takes place at PC∼18 GPa, forming a yurt-shaped evolution in response to magnetic field, pressure and temperature. Concomitant with the structural transition, NdSb simultaneously carries on a magnetic transition to the ferromagnetic state. Moreover, theoretical calculations unravel that the ferromagnetic tetragonal phase presents nontrivial features of Weyl fermions. These findings offer new important insight into the microscopic interplay among lattice, spin, and relativistic fermions in lanthanide monopnictides.