Representing the quantity zero as a symbolic concept is considered a unique achievement of abstract human thought.1,2 To conceptualize zero, one must abstract away from the (absence of) sensory evidence to construct a representation of numerical absence: creating "something" out of "nothing."2,3,4 Previous investigations of the neural representation of natural numbers reveal distinct numerosity-selective neural populations that overlap in their tuning curves with adjacent numerosities.5,6 Importantly, a component of this neural code is thought to be invariant across non-symbolic and symbolic numerical formats.7,8,9,10,11 Although behavioral evidence indicates that zero occupies a place at the beginning of this mental number line,12,13,14 in humans zero is also associated with unique behavioral and developmental profiles compared to natural numbers,4,15,16,17 suggestive of a distinct neural basis for zero. We characterized the neural representation of zero in the human brain by employing two qualitatively different numerical tasks18,19 in concert with magnetoencephalography (MEG) recordings. We assay both neural representations of non-symbolic numerosities (dot patterns), including zero (empty sets), and symbolic numerals, including symbolic zero. Our results reveal that neural representations of zero are situated along a graded neural number line shared with other natural numbers. Notably, symbolic representations of zero generalized to predict non-symbolic empty sets. We go on to localize abstract representations of numerical zero to posterior association cortex, extending the purview of parietal cortex in human numerical cognition to encompass representations of zero.10,20.
Read full abstract