Abstract Estimating hyper-volumes of convex and non-convex sets are of interest in a number of areas. In this article we develop further a simple geometric Monte Carlo method, known also as the sample-mean method, which transforms the domain to an equivalent hyper-sphere with the same volume. We first examine the performance of the method to compute the volumes of star-convex unit balls and show that it gives accurate estimates of their volumes. We then examine the use of this method for computing the volumes of nonstar-shaped domains. In particular, we develop two algorithms, which couple the sample-mean method with algebraic and geometric techniques, to generate and compute the volumes of low-dimensional stability domains in parameter space.