Non-small cell lung cancer (NSCLC) is a common malignant tumor characterized by rapid growth and invasive power. Glucose regulatory protein 78 (GRP78) is important in cancer cell progression. Here, this study aimed to explore the effect and mechanism of GRP78 on cisplatin (DDP) resistance of NSCLC cells. qRT-PCR and Western blot detected the expression of genes and proteins. Flow cytometry was used to analyze endoplasmic reticulum stress (ERS) induced by DDP in NSCLC. Cell proliferation and apoptosis were examined using cell counting kit-8 (CCK8), cell cloning, and flow cytometry, respectively. Chromatin immunoprecipitation assay (CHIP) and dual-luciferase reporter assays were performed to determine the binding of ETS1 and GRP78 promoter. Mouse xenograft models were constructed for in vivo analysis. ERS was induced by DDP in NSCLC cells. GRP78 were upregulated in DDP-resistant NSCLC tissues, and knockdown of GRP78 suppressed DDP resistance, clone formation, promoted apoptosis, and inhibited ERS in DDP-resistant NSCLC cells. ETS1 knockdown repressed GRP78 expression and NSCLC tumor growth. Interestingly, ETS1 played a role in DDP-resistant NSCLC via GRP78. ETS1 inhibits cisplatin sensitivity of NSCLC cells by promoting GRP78 transcription.
Read full abstract