Oxidation of protein therapeutics is a major chemical degradation pathway which may impact bioactivity, serum half-life and stability. Therefore, oxidation is a relevant parameter which has to be monitored throughout formulation development. Methods such as HIC, RPLC and LC/MS achieve a separation of oxidized and non-oxidized species by differences in hydrophobicity. Antibody-drug conjugates (ADC) although are highly more complex due to the heterogeneity in linker, drug, drug-to-antibody ratio (DAR) and conjugation site. The analytical protein A chromatography can provide a simple and fast alternative to these common methods. A miniature analytical protein A chromatography method in combination with an IdeS digest was developed to analyse ADCs. The IdeS digest efficiency of an IgG1 was monitored using SEC-HPLC and non-reducing SDS-PAGE. An antibody-fluorescent dye conjugate was conjugated at different dye-to-antibody ratios as model construct to mimic an ADC. With IdeS, an almost complete digest of a model IgG1 can be achieved (digested protein amount >98%). This enables subsequent analytical protein A chromatography, which consequently eliminates any interference of payload with the stationary phase. A novel high-throughput method for an interchain cysteine-linked ADC oxidation screens during formulation development was developed.
Read full abstract