Parkinson’s disease (PD) is a progressive neurological disease that causes both motor and nonmotor symptoms. While our understanding of putative mechanisms has advanced significantly, it remains challenging to verify biomarkers with sufficient evidence for regular clinical use. Clinical symptoms are the primary basis for diagnosing the disease, which can be mild in the early stages and overlap with other neurological disorders. As a result, clinical testing and medical records are mostly relied upon for diagnosis, posing substantial challenges during both the initial diagnosis and the continuous disease monitoring. Recent biochemical, neuroimaging, and genetic biomarkers have helped us understand the pathophysiology of Parkinson’s disease. This comprehensive study focuses on these biomarkers, which were chosen based on their relevance, methodological excellence, and contribution to the field. Biochemical biomarkers, including α-synuclein and glial fibrillary acidic protein (GFAP), can predict disease severity and progression. The dopaminergic system is widely used as a neuroimaging biomarker to diagnose PD. Numerous genes and genome wide association study (GWAS) sites have been related to the development of PD. Recent research on the SNCA gene and leucine-rich repeat protein kinase 2 (LRRK2) has shown promising results. By evaluating current studies, this review intends to uncover gaps in biomarker validation and use, while also highlighting promising improvements. It emphasizes the need for dependable and reproducible indicators in improving PD diagnosis and prognosis. These biomarkers may open up new avenues for early diagnosis, disease progression tracking, and the development of personalized treatment programs.
Read full abstract