This text investigates the bending/buckling behavior of multi-layer asymmetric/symmetric annular and circular graphene plates through the application of the nonlocal strain gradient model. Additionally, the static analysis of multi-sector nanoplates is addressed. By considering the van der Waals interactions among the layers, the higher-order shear deformation theory (HSDT), and the nonlocal strain gradient theory, the equilibrium equations are formulated in terms of generalized displacements and rotations. The mathematical nonlinear equations are solved utilizing either the semi-analytical polynomial method (SAPM) and the differential quadrature method (DQM). Also, the available references are used to validate the results. Investigations are conducted to examine the effect of small-scale factors, the van der Waals interaction value among the layers, boundary conditions, and geometric factors.
Read full abstract