<abstract><p>The numerical solution of the time-fractional Black-Scholes model for European and American options is presented using a local meshless collocation approach based on hybrid Gaussian-cubic radial basis functions with polynomials is presented. The approach is then expanded to a nonlinear time-fractional model for an option with transaction costs in a market with low liquidity. The spatial derivatives of the models are discretized using the proposed meshless technique. Numerical experiments are carried out for the American option, European option, and nonlinear transaction cost option models. In order to evaluate the effectiveness and precision of the suggested meshless approach, $ L_{\infty} $ and $ L_{rel} $ error norms are utilized. Both call and put option volatility is explored. A non-uniform grid customized around the strike price region is also used to determine the prices of European call and American put options. The methods described in literature are compared with the numerical results.</p></abstract>