In the radiation hydrodynamic simulations used to design inertial confinement fusion (ICF) and pulsed power experiments, nonlinear radiation diffusion tends to dominate CPU time. This raises the interesting question of whether a quantum algorithm can be found for nonlinear radiation diffusion which provides a quantum speedup. Recently, such a quantum algorithm was introduced based on a quantum algorithm for solving systems of nonlinear partial differential equations (PDEs) which provides a quadratic quantum speedup. Here, we apply this quantum PDE (QPDE) algorithm to the problem of a non-equilibrium Marshak wave propagating through a cold, semi-infinite, optically thick target, where the radiation and matter fields are not assumed to be in local thermodynamic equilibrium. The dynamics is governed by a coupled pair of nonlinear PDEs which are solved using the QPDE algorithm, as well as two standard PDE solvers: (i) Python's py-pde solver; and (ii) the KULL ICF simulation code developed at Lawrence-Livermore National Laboratory. We compare the simulation results obtained using the QPDE algorithm and the standard PDE solvers and find excellent agreement.
Read full abstract