Computational approaches are increasingly explored in development of drug products, including the development of lipid-based formulations (LBFs), to assess their feasibility for achieving adequate oral absorption at an early stage. This study investigated the use of computational pharmaceutics approaches to predict solubility changes of poorly soluble drugs during dispersion and digestion in biorelevant media. Concentrations of 30 poorly water-soluble drugs were determined pre- and post-digestion with in-line UV probes using the MicroDISS Profiler™. Generally, cationic drugs displayed higher drug concentrations post-digestion, whereas for non-ionized drugs there was no discernible trend between drug concentration in dispersed and digested phase. In the case of anionic drugs there tended to be a decrease or no change in the drug concentration post-digestion. Partial least squares modelling was used to identify the molecular descriptors and drug properties which predict changes in solubility ratio in long-chain LBF pre-digestion (R2 of calibration = 0.80, Q2 of validation = 0.64) and post-digestion (R2 of calibration = 0.76, Q2 of validation = 0.72). Furthermore, multiple linear regression equations were developed to facilitate prediction of the solubility ratio pre- and post-digestion. Applying three molecular descriptors (melting point, LogD, and number of aromatic rings) these equations showed good predictivity (pre-digestion R2 = 0.70, and post-digestion R2 = 0.68). The model developed will support a computationally guided LBF strategy for emerging poorly water-soluble drugs by predicting biorelevant solubility changes during dispersion and digestion. This facilitates a more data-informed developability decision making and subsequently facilitates a more efficient use of formulation screening resources.
Read full abstract