In this article, an analytical approach to the study of the behavior of functionally graded FG coatings under local load is developed. The method is suitable for coatings with a specific structure. We consider that the coating can be conditionally divided into two zones: a relatively rigid outer and a relatively compliant inner. The outer layer is modeled by a non-homogeneous plate that bends. We submit the inner substrate to the hypothesis of a non-homogeneous thin Winkler layer. The solution of the formulated boundary value problem is constructed in analytical form. Simulation examples for FG aluminum oxide coatings grown from aluminum sprayed on steel and from compact alloy D16T are considered. The distributions of equivalent stresses, safety factors and normalized equivalent stresses in the coatings are studied. It is noted that in a heterogeneous material, the location of the minimum of the safety factor does not always coincide with the location of the maximum of the equivalent stress.
Read full abstract