Obesity is a common public health issue worldwide, and its negative impact on lung function has garnered widespread attention. This study sought to investigate the possible association between a new obesity metric, the weight-adjusted waist index (WWI), and lung functions, providing a basis for the monitoring and protection of lung functions. We conducted a cross-sectional evaluation, analyzing data from adults in the U.S. gathered through the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2012. To explore the correlation between WWIs and lung functions, we utilized a multivariate logistic regression model with appropriate weighting to ensure accuracy. Smooth curve fitting also helped to confirm the linear nature of this relationship. Subgroup analyses were conducted to confirm the uniformity and dependability of the results. Our study included data from 13,805 adults in the United States. Multivariate linear regression analysis revealed that, in the fully adjusted model, higher WWIs were negatively correlated with forced vital capacity (FVC), forced expiratory volume in the first second (FEV1), FEV1/FVC, peak expiratory flow rate (PEF), and forced expiratory flow rate (FEF) 25%-75% (β = -0.63; 95% confidence interval [CI] [-0.71, -0.55]; β = -0.55; 95% CI [-0.62, -0.48]; β = -0.02; 95% CI [-0.03, -0.01]; β = -1.44; 95% CI [-1.65, -1.23]; β = -0.52; 95% CI [-0.65, -0.39], respectively). Additionally, when analyzing the WWI as a categorical variable, a significant downward trend in the FVC, FEV1, PEF, and FEF 25%-75% was observed from Q2 to Q4 as the WWI increased (trend P < 0.05). Subgroup analysis showed stronger associations between WWI and lung functions, particularly among younger, non-Hispanic white, male participants, and current smokers. Our results indicate that elevated WWI is strongly associated with declining lung functions, demonstrating the importance of long-term monitoring and tracking of WWIs.
Read full abstract