This issue is concerned with structural and phase transitions in heterogeneous and composite materials, the effects of external magnetic fields on these phenomena and the macroscopic properties and behaviour of materials with isotropic and anisotropic internal structures. Using experimental, theoretical and computer methods, these transitions are studied at the atomic and mesoscopic levels. The fundamental specific feature of structural transitions in many heterogeneous media consists of the fact that these transitions are stacked for a long time in non-equilibrium states that appear due to either macroscopic dissipative processes (an alternating magnetic field or hydrodynamic flow, for instance) or system lifetime in a metastable state. It is important to explain and describe these transitional states using the general approach of non-equilibrium physical mechanics. The review and research articles in the issue will cover the whole spectrum of scales (from nano to macro) and materials (from metastable liquids to biological polymers) in order to exhibit recently developed trends in the field of heterogeneous materials. Atomistic modelling, structuring induced by external magnetic fields and hydrodynamic flows, metastable and non-ergodic states, mechanical properties and phenomena in heterogeneous materials-all these are covered. This article is part of the theme issue 'Heterogeneous materials: metastable and non-ergodic internal structures'.
Read full abstract