A full wave description of electromagnetic coupling occurring in circuits has to consider time delays. The retarded partial-element equivalent-circuit ( <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">r</i> PEEC) method is one of the approaches which allows us to take time delays resulting in a set of neutral functional differential equations into account. Due to the fragility of electromagnetic solvers, the asymptotic stability is a key issue in PEEC modeling. This paper presents an innovative method, based on linear matrix inequalities, to study the input-to-state stability of PEEC models with multiple noncommensurate time delays. Numerical results are given to illustrate the effectiveness of the proposed method.
Read full abstract