Molecular genetic manipulation of the mouse offers the possibility of elucidating the function of individual gene products in neural systems underlying learning and memory. Many extant learning paradigms for mice rely on negative reinforcement, involve simple problems that are relatively rapidly acquired and thus preclude time-course assessment, and may impose the need to undertake additional experiments to determine the extent to which noncognitive behaviors influence the measures of learning. To overcome such limitations, a multiple schedule of repeated acquisition and performance was behaviorally engineered to assess learning vs rote performance within-behavioral test session and within-subject utilizing an apparatus modified from the rat (the repeated acquisition and performance chamber; RAPC). The multiple schedule required mice to learn a new sequence of door openings leading to saccharin availability in the learning component during each session, while the sequence of door openings for the performance component remained constant across sessions. The learning and performance components alternated over the course of each test session, with different auditory stimuli signaling which component was currently in effect. To validate this paradigm, learning vs performance was evaluated in two inbred strains of mice: C57BL/6J and 129/SvJ. The hippocampal dependence of this measure was examined in lesioned C57BL/6J mice. Both strains exhibited longer latencies and higher errors in the learning compared to the performance component and evidenced declines in both measures across the trials of each session, consistent with an acquisition phenomenon. These same measures showed little or no evidence of change in the performance component. Whereas three trials per session were utilized with C57BL/65 mice in each component, behavior of 129/SvJ mice could only be sustained for two trials per component per session, demonstrating differences in testing capabilities between these two strains under these experimental conditions and thus precluding the ability to make systematic strain comparisons of learning capabilities. Hippocampal lesions in C57BL/6J mice resulted in substantially longer latencies and increased errors in the learning but not the performance component, demonstrating the importance of this region to spatial learning as measured in the RAPC. In aggregate, this positive reinforcement-based operant paradigm to evaluate murine spatial learning detects strain differences and hippocampal dependence and permits explicit differentiation of the impact of noncognitive contributions to learning measures on a within-subject, within-session basis.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access