Shear-induced self-diffusion is a fundamental mode of transport in granular flows. Yet its critical behaviour and dependence on the particle solid fraction are still unclear. Here, we rationalize these dependencies by performing two-dimensional pressure-imposed numerical simulations of dense non-Brownian frictional suspensions. Our results, combined with existing numerical data on inertial granular flows, show that the shear-induced diffusion coefficients of both systems can be captured by a single function of the distance to jamming. They further show that the grain diffusive behaviour is underpinned by a specific random walk process, having a constant elementary step length driven at a frequency that increases with the solid fraction. The proposed scaling laws pave the way for a better understanding of mixing processes in granular media.
Read full abstract