The motion of rigid particles in complex fluids is ubiquitous in natural and industrial processes. The most popular toy model for understanding the physics of such systems is the settling of a solid sphere in a viscoelastic fluid. There is general agreement that an elastic wake develops downstream of the sphere, causing the breakage of fore-and-aft symmetry, while the flow remains axisymmetric, independent of fluid viscoelasticity and flow conditions. Using a continuum mechanics model, we reveal that axisymmetry holds only for weak viscoelastic flows. Beyond a critical value of the settling velocity, steady, non-axisymmetric disturbances develop peripherally of the rear pole of the sphere, giving rise to a four-lobed fingering instability. The transition from axisymmetric to non-axisymmetric flow fields is characterized by a regular bifurcation and depends solely on the interplay between shear and extensional properties of the viscoelastic fluid under different flow regimes. At higher settling velocities, each lobe tip is split into two new lobes, resembling fractal fingering in interfacial flows. For the first time, we capture an elastic fingering instability under steady-state conditions, and provide the missing information for understanding and predicting such instabilities in the response of viscoelastic fluids and soft media.
Read full abstract