BackgroundApical papilla stem cells (SCAPs) exhibit significant potential for tissue repair, characterized by their anti-inflammatory and pro-angiogenic properties. Exosomes derived from stem cells have emerged as safer alternatives that retain comparable physiological functions. This study explores the therapeutic potential of exosomes sourced from SCAPs in the treatment of non-alcoholic steatohepatitis (NASH).MethodsA NASH mouse model was established through the administration of a high-fat diet (HFD), and SCAPs were subsequently isolated for experimental purposes. A cell model of NASH was established in vitro by treating hepatocellular carcinoma cells with oleic acid (OA) and palmitic acid (PA). Exosomes were isolated via differential centrifugation. The mice were treated with exosomes injected into the tail vein, and the hepatocytes were incubated with exosomes in vitro. After the experiment, physiological and biochemical markers were analyzed to assess the effects of exosomes derived from SCAPs on the progression of NASH in both NASH mouse models and NASH cell models.ResultsAfter exosomes treatment, the weight gain and liver damage induced by HFD were significantly reduced. Additionally, hepatic fat accumulation was markedly alleviated. Mechanistically, exosomes treatment promoted the expression of genes involved in hepatic fatty acid oxidation and transport, while simultaneously suppressing genes associated with fatty acid synthesis. Furthermore, the levels of serum inflammatory cytokines and the mRNA expression of inflammatory markers in liver tissue were significantly decreased. In vitro cell experiments produced similar results.