Nicotine exhibits obvious heterosis, which can be used to create Nicotiana tabacum L. (tobacco) varieties with varying nicotine content. However, the reasons for the formation of nicotine heterosis and its relationship to nicotine transport and accumulation remain unknown. This study conducted a comprehensive analysis of six tobacco hybrids with varying heterosis levels and their parent materials from various aspects, such as phenotype, physiology, and transcriptomics. The results showed that the direct path coefficient of transport heterosis to nicotine heterosis was highest in hybrids, at 0.98, and a highly significant positive correlation between the two. The plant height, thick stalk circumference, large flow of tissue fluid in the stalk, and high nicotine concentration of tobacco were the underlying factors that led to the strong nicotine transport capacity of hybrids. The formation of nicotine transport heterosis in hybrids was mainly influenced by non-additive gene effects (accounting for 89.93%), with over-dominant effects playing a dominant role (accounting for 58.79%). Among non-additive expression DEGs, nicotine transporter related multi antimicrobial extrusion protein, drug/metabolite transporter, ABC family transporter, and glutathione S-transferase were significantly upregulated in hybrid strains. The RT-qPCR results indicated that these genes related nicotine transport also exhibited heterosis at the expression level. Our results revealed that the formation of nicotine heterosis is mainly achieved by enhancing the nicotine transport capacity in hybrids. The results are not only beneficial for promoting the theoretical study of nicotine heterosis in tobacco and the breeding and utilization of hybrids, but are also of great significance for guiding nicotine production and promoting its multipurpose utilization.
Read full abstract