The Batalin-Vilkovisky formalism is applied to quantise the N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{N} $$\\end{document} = 1 supersymmetric generalisation of the Freedman-Townsend (FT) model, which was proposed by Lindström and Roček in 1983 in Minkowski superspace and is lifted to a supergravity background in this paper. This super FT theory describes a non-Abelian tensor multiplet and is known to be classically equivalent to a supersymmetric nonlinear sigma model. Using path integral considerations, we demonstrate that this equivalence holds at the quantum level in the sense that the quantum supercurrents in the two theories coincide. A modified Faddeev-Popov procedure is employed to quantise models for the N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{N} $$\\end{document} = 2 tensor multiplet in harmonic superspace. The obtained results agree with those derived by applying the Batalin-Vilkovisky scheme within the harmonic superspace setting.