Applying high strength steels to tubular joints can increase the propensity to fracture failure due to their lower ductility. However, to simulate the fracture behavior in the finite element (FE) analysis, sophisticated material damage model with rigorous fracture criteria should be incorporated. Recently, the latest draft of ISO 14346 has advocated the use of 5% strain limit in FE analysis of tubular joints. The strain limit concept has been further developed by the authors’ previous work, for its use as a practical alternative to the complicated material damage model. Specifically, a lowered limit of 2.5% was recommended for longitudinal plate to circular hollow section (CHS) joints subjected to in-plane bending. This study extends the strain limit investigation to longitudinal plate to tubular X joints subjected to tensile loads. An experimental program is first presented which included both CHS and rectangular hollow section (RHS) chord members fabricated from two high strength steels with nominal yield stresses of 460 MPa and 700 MPa. Based on test-validated supplemental numerical analyses, it is suggested that the joint load corresponding to 2.5% strain limit can be taken as the load-bearing capacity to suppress occurrence of a fracture failure for the tubular joint configurations considered in this study.
Read full abstract