A two-point cylindrical-focused laser differential interferometer (2P-CFLDI) system and a conventional Z-type Schlieren were used to measure the hypersonic turbulent boundary layer on a flat plate at Mach number Ma = 6 and Reynolds number Re = 1.08 × 106 m−1. The boundary layer thickness at the measurement location and the noise radiation angle were obtained by post-processing the Schlieren image. The 2P-CFLDI data underwent cross-correlation analysis to calculate the mean convective velocities at different heights and compared with previous experimental and numerical results. The experimentally measured mean convective velocities agree with the trend of available DNS and experimental results. The mean convective velocity near the wall is significantly larger than the local mean velocity and is the main noise source region. Further filtering treatment shows that the convective velocity of the disturbed structure decreases gradually with the increase in the disturbance scale. The differences between convective velocities at different scales are significantly larger outside the boundary layer than inside the boundary layer, which is in agreement with the findings of the previous hot wire experiments. Near the wall, large-scale disturbances mainly determine the localized mean convective velocity, which are the main source of noise radiation for the hypersonic turbulent boundary layer.